
Spreadsheet Property Detection With Rule-assisted
Active Learning

Zhe Chen1, Xin Rong1, Sasha Dadiomov2, Richard Wesley2,
Gang Xiao2, Daniel Cory2, Michael Cafarella1, Jock Mackinlay2

1University of Michigan, 2Tableau Software
{chenzhe,ronxin,michjc}@umich.edu, {sdadiomov,hawkfish,gxiao,dcory,jmackinlay}@tableau.com

ABSTRACT
Spreadsheets are a critical and widely-used data manage-
ment tool. Converting spreadsheet data into relational ta-
bles would bring benefits to a number of fields, including
public policy, public health, and economics. Research to
date has focused on designing domain-specific languages to
describe transformation processes or automatically convert-
ing a specific type of spreadsheets. To handle a larger vari-
ety of spreadsheets, we have to identify various spreadsheet
properties, which correspond to a series of transformation
programs that contribute towards a general framework that
converts spreadsheets to relational tables.

In this paper, we focus on the problem of spreadsheet
property detection, identifying when a corresponding trans-
formation program should be applied. We propose a hybrid
approach of building a variety of spreadsheet property de-
tectors to reduce the amount of required human labeling ef-
fort. Our approach integrates an active learning framework
with crude, easy-to-write, user-provided rules. Our experi-
ments show that when compared to a standard active learn-
ing approach, we reduced the training data needed to reach
the performance plateau by 34–44% when a human provides
relatively high-quality rules, and by a comparable amount
with low-quality rules. A study on a large-scale web-crawled
spreadsheet dataset demonstrates that it is crucial to detect
a variety of spreadsheet properties in order to transform a
large portion of the spreadsheets into a relational form.

1. INTRODUCTION
Spreadsheets are widely used for data management and

sharing. It is estimated that Microsoft Excel has more than
400 million users, and 50–80% of businesses use spread-
sheets.1 Meanwhile, a large number of spreadsheets are
available on the web. For example, the United States Cen-
sus Bureau publishes thousands of spreadsheets about eco-
nomics, transportation, public health, and other important
social topics every year.

Many spreadsheet files are designed to be interpreted by
human, and often cannot be easily consumed by other soft-
ware applications for complex data analysis and visualiza-
tion (e.g., R, Tableau). For example, Figure 1 shows a part
of a spreadsheet downloaded from the Census Bureau. This
spreadsheet is almost impossible to be consumed by down-
stream data analysis programs, if we fail to identify the
structural features, such as title (rows 1–3), header (row 5),
sub-header (rows 6, 34), and aggregation rows (rows 7, 35).

1
http://www.cutimes.com/2013/07/31/

rethinking-spreadsheets-and-performance-management

Figure 1: A spreadsheet about population statistics,
from the Statistical Abstract of the United States.

Edutation Attainment Race Value

Less than 9th grade White alone 7626199
Less than 9th grade Black or African… 1250932
Less than 9th grade American Indian… 132119
9th to 12th grade… White alone 12181361
9th to 12th grade… Black or African… 3151934
9th to 12th grade… American Indian… 207542
High school graduate… White alone 46127209
High school graduate… Black or African… 7613046
High school graduate… American Indian… 475857

Family Income Race Value

Less than $10,000 White alone 1872052
Less than $10,000 Black or African… 951644
Less than $10,000 American Indian… 55625
$10,000 to $14,999 White alone 1555245
$10,000 to $14,999 Black or African… 563007
$10,000 to $14,999 American Indian… 39350
$15,000 to $19,999 White alone 1982661
$15,000 to $19,999 Black or African… 583609
$15,000 to $19,999 American Indian… 34467

Figure 2: The ideal relational tables for the spread-
sheet example shown in Figure 1.

To make it more machine readable, the same spreadsheet
can be converted to relational tables, as shown in Figure 2.
An essential requirement for such relational tables is that
each column should be homogeneous, or, belong to the same
semantic class.

Automating the conversion of a spreadsheet into a re-
lational table apparently has great appeal for a number
of communities. One way of achieving this is by design-
ing a domain-specific language (DSL) to describe the rules
for spreadsheet-to-relational-table transformation and im-
plementing a program to support the DSL [2, 11, 13, 14].
However, this approach requires a significant amount of hu-
man effort for composing the rules for each spreadsheet vari-
ant. Another approach is to make assumptions on the struc-
tural features of spreadsheets (e.g., assuming a spreadsheet
only has headers and sub-headers), and use heuristics or
data-driven models to transform certain types of spread-
sheets into a relational format [1, 5, 7, 6, 8]. While this
approach requires less human effort, the range of the spread-

1

sheets it supports is restricted by its assumptions on the
spreadsheet structure.

In this paper, we envision a framework for transforming
any kind of spreadsheets into relational tables. The center
idea of building the framework is to identify and transform
spreadsheet properties, i.e., the special structural features
that distinguish a spreadsheet table from a relational ta-
ble. Given a spreadsheet table, the pipeline consists of two
stages: identifying the existence of spreadsheet properties;
and applying transformation for each identified property.

Take the table in Figure 1 as an example, the identifiable
properties and the corresponding transformations include:

• aggregation rows—Data values in rows 16–17 are ag-
gregated values defined on rows 7–14. Transformation:
remove the aggregation rows.

• aggregation columns—Data values in column B are ag-
gregated values defined on column C–E. Transforma-
tion: remove the aggregation column.

• crosstab—The headers of columns C–E (i.e., “White
alone”, “Black or ...”, etc.) form a horizontal dimen-
sion “Race.” Transformation: pivot this horizontal di-
mension into a new column “Race.”

• split tables—Rows 6–17 are about “Education Attain-
ment”and rows 34–43 are about“Family Income.” Trans-
formation: split as two tables.

If one can identify all the properties above and correctly
apply the corresponding transformations, then she can suc-
cessfully transform the spreadsheet in Figure 1 into rela-
tional tables as shown in Figure 2. We argue that accurately
detecting the existence of spreadsheet properties is essential
to such a transformation process. This is because while some
transformations are straightforward (e.g., removing aggre-
gation rows or columns), many operations are non-trivial
and can be computationally expensive. As suggested by
[6], transforming spreadsheet tables with hierarchical struc-
ture may take O(N2) time, where N is the number of rows.
Thus, spreadsheet property detection can greatly improve
the computational efficiency of the overall pipeline by avoid-
ing expensive and unnecessary transformations. In addi-
tion, training a transformation model for a given property
requires extensive human labeled data. If a technique exists
to accurately identify the set of spreadsheets that possess
a given property, then it will be much easier to construct
a human labeled dataset to train a transformation model
for that property. Therefore, in this paper, instead of dis-
cussing an end-to-end pipeline converting spreadsheet tables
into relational tables, we focus exclusively on the problem
of detecting spreadsheet properties.

Spreadsheet property detection is a challenging task by
itself, for two reasons. First, labeling instances to train
property detectors is expensive. For example, to deter-
mine whether a spreadsheet contains the property aggrega-
tion rows, a human labeler may have to review all the header
or data cells for potential keywords (e.g., “total”, “sum”, “av-
erage”), as well as checking whether the cells contain calcu-
lated values based on a formula. Second, there are a variety
of customized spreadsheet datasets, and one might look very
different from another. To build high-quality property de-
tectors requires a sufficient number of labeled instances that
also cover a large variety of spreadsheet types.

To this end, we propose a novel rule-assisted active learn-
ing framework to construct high-quality spreadsheet prop-
erty detectors, and its goal is to save human labeling effort

as much as possible. Our key insight is that a human la-
beler can not only provide labels to individual training in-
stances, but also write crude heuristic rules based on their
intuitions on how a property might be detected. An ex-
ample rule can be, “if a spreadsheet contains a row with
formulas, then it has the property aggregation rows.” Such
rules are, obviously, not always reliable. But we design a
hybrid framework that integrates such crude user-provided
rules and user-provided labels based on their agreement so
as to improve the system’s tolerance on low-quality rules. In
addition, we adopt an active learning strategy to iteratively
ask human to label the most ambiguous training instances.
The hybrid approach can generate additional high-quality
labeled data, especially in the initial stage of training, in
order to bootstrap the learning process.

Our approach was evaluated on a sample of web spread-
sheet dataset of 400 tables labeled with properties. The
result indicated that we could reduce the amount of labeled
data needed to reach the performance plateau by 34–44%
when a human provides high-quality rules, and compara-
ble performance with low-quality rules. We also applied the
trained property detectors to a much larger-scale dataset of
1.1 million spreadsheets, and provided insights on how the
distribution of identified spreadsheet properties impact the
downstream transformations into relational tables.

Our contributions are as follows:

• The concept of spreadsheet properties, and its relation-
ship to the transformation from spreadsheets to rela-
tional tables.

• A novel, hybrid, rule-assisted active learning frame-
work for spreadsheet property detection. This inte-
grates an active learning framework with crude user-
provided rules to save human labeling effort. By using
a bagging-like technique, it can tolerate lower-quality
user-provided rules (Sections 3 and 4).

• A comprehensive evaluation that demonstrates our hy-
brid framework outperforms active learning baselines
by significantly reducing the training data needed to
reach the performance plateau (Section 5).

• Findings on a large-scale web spreadsheet corpus that
can serve as a guideline for designing an end-to-end
pipeline that transforms spreadsheets to relational ta-
bles (Section 6).

2. RELATED WORK
Spreadsheet Management – Existing approaches for trans-
forming spreadsheets into relational tables fall into two cat-
egories. First, rule-based approaches [2, 11, 13, 14] require
users to learn a domain-specific language to describe the
transformation process. These approaches are flexible but
composing the rules is often difficult and time-consuming.
Different from the above approaches, our trained property
detector can automatically suggest transformation programs.

Second, automated approaches are the most similar to
ours. Abraham and Erwig [1] attempt to recover spread-
sheet tuples, and Cunha et al. [8] primarily focus on the
problem of data normalization. Chen and Cafarella [5, 6,
7] focus on extracting hierarchical structure in spreadsheets
by incorporating users’ feedback. While the existing work
mainly focuses on transforming a specific type of spread-
sheets, we attempt to build a framework that can handle a
much larger variety of spreadsheets.

2

Active Learning – There are two common active learn-
ing strategies [19]. First, the uncertainty sampling strat-
egy chooses to label instances that are closest to the de-
cision boundary, and it refines the decision boundaries by
heavily exploiting the current knowledge space. The uncer-
tainty sampling approach in [18] selects the instance with
the predicted probability closest to 0.5. Second, the query
by committee (QBC) strategy takes into account the dis-
agreement of multiple “committee” classifiers to select query
instances [20]. This is more complicated than uncertainty
sampling as it requires careful designs of committee mem-
bers (i.e., a set of classification models) and a metric to
measure disagreement among committee members. While
our hybrid iterative framework is based on the basic uncer-
tainty sampling strategy, our learning framework is distinct
in that it incorporates the crude user-provided rules to fur-
ther reduce the amount of required human effort.

Alternative strategies exist for utilizing human resources
for model development. Attenberg and Provost [3] use a
“guided learning” approach to search explicitly for training
examples for each class. Druck et al. [10] propose an active
learning approach in which the machine solicits labels on
features rather than instances. Xiaoxuan et al. [21] consid-
ers online learning with imbalanced streaming data under
a query budget, and the approach utilizes the end-user ef-
fort to enable customization and personalization. Similar to
these approaches, we ask the user to do more than label-
ing training instances (in our case, providing crude rules for
property detection). But different from their situation, we
focus on addressing the the scenario where the user provides
low-quality rules by using a bagging-like technique.

We notice that active learning strategies often suffer from
the “cold-start” problem [23]: in the beginning stage, the
classifier lacks training data to approach the ideal decision
boundary and suggest effective instances to label. Zhu et
al. [23] address this problem by finding clusters of distinct
content among the unlabeled instances. Donmez et al. [9]
propose to use a robust combination of density weighted
uncertainty sampling and standard uncertainty sampling to
overcome the cold-start problem. In this paper, we propose
an alternative approach to address this problem by asking
users to provide heuristic rules. Such rules are used to gen-
erate additional labels to warm up the classifiers quickly.

3. PROPERTY DETECTION FRAMEWORK
We define a spreadsheet table as the portion of a spread-

sheet that can be converted into one or more relational ta-
bles. A spreadsheet table consists of two regions: a header
region and a data region. For example, in Figure 1, the
header region is row 5, and the data region spans across
rows 6–43. One can employ a linear-chain conditional ran-
dom field (CRF) to automatically identify the header and
data regions [5].

Given a spreadsheet table, the property detection task is
to build a binary classifier for a spreadsheet property. We
formally define the task below.

Let Q = {q1, ..., qk} be a set of spreadsheet properties.
The property detector builds a set of binary classifiers: one
classifier θq for each q ∈ Q, and the classifier θq determines
whether a spreadsheet table has the property q. Given a
spreadsheet table x, the property detector generates a subset
of properties q = {q} and q ⊆ Q. It represents that x
contains and only contains the set of properties q.

3.1 The Iterative Learning Framework

Spreadsheets

Sheet Selector Classifier
Learner

Sheet
to label

Retrieved
Sheet

Labeled

data

Classifiers

User-provided
Crude Rules

3

Iterative Learning

2

4

1

Property Detector

Transformation

Spreadsheet Table

Relational Table

Figure 3: The hybrid iterative learning framework
for spreadsheet property detection.

Figure 3 shows our proposed hybrid iterative learning frame-
work for spreadsheet property detection. In the initial stage,
a human labeler provides crude heuristic rules (see Sec-
tion 3.3 for a detailed discussion). During the interactive
learning stage, the sheet selector selects a spreadsheet from
the dataset, and presents it to the human labeler. The
labeler is responsible for labeling the spreadsheet with all
the spreadsheet properties it contains. The classifier learner
then accumulates all human labeled spreadsheets together
with automatically generated labels using the user-provided
rules, to train a classifier for each spreadsheet property. The
human labeler iteratively labels a spreadsheet selected by
the sheet selector and the classifier learner produces newly
trained classifiers for each iteration. In the end, we ob-
tain the most newly trained classifiers from the classifier
learner as the output spreadsheet property detectors, which
can then be used in an end-to-end pipeline that transforms
spreadsheet tables into relational ones.

Note that in the cases of imbalanced training data, we
duplicate the instances of the minority class until its size is
comparable to the size of the majority class [12]. In the rest
of this section, we describe the human labeling process and
techniques to save human effort.

3.2 Human Labeling Process

3.2.1 Construct Property Detectors
To construct the property detectors requires human label-

ers to provide the following three types of data:

1. Features f(x): We generate features f(x) for each
spreadsheet table x, and they represent the important sig-
nals derived from x to help determine whether x contains a
property or not. For example, if a spreadsheet table’s data
region contains the keyword “total”, it is very likely to have
the property “aggregation rows”. The significant features
might be different for different spreadsheet properties or in
different datasets. For simplicity, we use f(x) to represent
the universe of the features.

Our features are as follows:
• whether a cell in the header/data region contains one

of the keywords: “total”, “sum”, “avg”, “average”, “me-
dian”, “mean”, “totals”, “summary”, “subtotal”;
• the standard deviation of the lengths of the strings in

the header;
• the average/maximum p-value for the t-test for data

values in two numeric columns;
• the maximum/minimum ratio of formula cells to nu-

meric cells in a data row/column;
• whether a column in the data region has different for-

3

matting styles, and we test each of the 8 styles.2

• whether the data/header region has a merged cell;
• whether there exists two cells in the header region,

one has a higher column but lower row index than the
other;
• whether the spreadsheet table is empty;
• whether there is no header/data region;
• the ratio of numeric cells to total cells in the spread-

sheet table;
• the ratio of non-zero cells to total/numeric cells in the

spreadsheet table;
• the maximum ratio of non-zero cells to numeric cells

in data rows/columns;
• the ratio of numeric to all data rows/columns;
• the absolute number of numeric data rows/columns.

2. Property Set (Q): It is hard to construct a complete
spreadsheet property set Q in one shot because there are
always unknown properties in new data. Instead, we define
a few properties that we are aware of as the set of predefined
properties. At the same time, we allow new properties to be
added during labeling.

3. Training Data D = {(x,q)}: given a spreadsheet
table x, a human labeler has to determine the set of prop-
erties q contained by x. During the labeling process, the
human labeler evaluates the transformation process for con-
verting a spreadsheet table x to relational tables, and decides
whether x contains the predefined spreadsheet properties or
new properties.

To be specific, a human labeler first labels a spreadsheet
table x using the predefined properties. It is straightforward
to decide whether a spreadsheet x contains a well-defined
property. In addition, the human labeler is also tasked with
discovering new properties via the following procedure: after
labeling x using the predefined properties, the human labeler
attempts to convert x to relational tables using the trans-
formation operations defined by q and determines whether
the conversion is successful. If not, the human labeler has to
define one or more new spreadsheet properties with corre-
sponding transformation operations, and then add the new
properties to q.

For example, assume that we have defined two proper-
ties, “aggregation rows” and “aggregation columns.” For the
spreadsheet table shown in Figure 1, we recognize that it
contains both properties. We then attempt to use the cor-
responding transformation programs to convert this spread-
sheet table to relational tables. In this case we would fail,
because we still need to separate rows 6–17 (about “Educa-
tion Attainment”) and rows 34–43 (about “Family Income”)
into two separate relational tables. Therefore, we define a
new spreadsheet property “split table”, and add it to q. We
will keep finding new properties until the spreadsheet table
can be successfully transformed into relational tables.

As can be seen from the above discussion, it requires a
considerable amount of human effort to construct a binary
classifier for each spreadsheet property.

3.3 Reducing Human Effort
To reduce the amount of required human effort on gen-

erating training data D = {(x,q)}, we adopt the following
two strategies:

2
The 8 styles are: a cell’s alignment; a cell’s height; a cell’s indenta-

tions; whether a cell contains colon; whether a cell is bold; whether a
cell is capitalized; whether a cell is italic; whether a cell is underlined.

Uncertainty Sampling — In active learning, a typical
strategy to pick instances for training a binary classifier is
uncertainty sampling, which chooses instances closest to the
decision boundary. Our sheet selector adopts this strategy.
However, during the beginning phase of the training process,
there lacks enough training data for the classification model
to approach a reasonable decision boundary. The technique
introduced below addresses this problem.

User-provided Crude Rules — Before labeling any
spreadsheet, we bring in human’s intuition on building prop-
erty detectors by asking for crude and easy-to-write rules.
For example, it might be straightforward for a user to as-
sume, “if a spreadsheet contains a row with formulas, then
it has the property aggregation rows.” In our framework, we
ask for simple rules like this (see Table 1 for more examples)
and do not need a user to spend a huge amount of effort
coming up with high-quality ones.

Now that we have a set of crude rules, in the initial stage of
training, we can generate a set of training instances by first
applying such rules to the available data, and treating the
results as labeled instances. As the training progresses, the
number of human-labeled instances increases. This allows
us to filter the labeled training instances by finding those
with agreement from both the user-provided rules and the
trained classifier at each iteration. This makes it possible for
our framework to tolerate low-quality user-provided rules.
Then we can approach the ideal decision boundary quickly
to reduce the amount of required labeled data.

In the next section, we describe the training algorithms in
detail.

4. ALGORITHMS
Let x = {x} be the random variables representing a set

of spreadsheet tables, and θq the learned classifier for the
property q ∈ Q where Q is the property set containing all
the discovered spreadsheet properties. Let θq init be the
user-provided crude rules for the property q.

4.1 Iterative Learning Algorithms
First we discuss the algorithms of our hybrid iterative

learning framework by considering two different situations,
with or without user-provided crude rules.

Without User-provided Rules — Without the user-
provided rules in the beginning stage, the iterative learning
framework is essentially a typical active learning process.

As shown in Algorithm 1, the sheet selector selects a new
instance from the spreadsheet table set (we describe the al-
gorithm in Section 4.2); a human labeler labels the instance
and sends it to the classifier learner; and finally the classifier
learner trains the property detectors according to all the ac-
cumulated labeled instances. We iterate the above process
until the stopping criteria. We stop by testing whether the
performance reaches the plateau (i.e., the standard devi-
ation of K continuous points is less than δ, where δ is a
predefined threshold).

With User-provided Rules — As shown in Algorithm 2,
given a spreadsheet property q, the user-provided rules θq init

produces a set of labels {lq init} on the spreadsheet table
set {x}, and each label lq init represents whether the cor-
responding spreadsheet table x has the property q or not.
However, we do not know the quality of the rule-generated
labels {lq init}.

For each property q, we collect the training data for each

4

Algorithm 1 Iterative learning without user-provided rules.

Input: spreadsheet table set x = {x}
Output: property detectors {θq}.
1: D = [] // Initialize training data
2: repeat
3: Sheet selector chooses x from {x}
4: Ask human to label x with properties q
5: D ← D ∪ (x,q) // Update training data
6: Q← Q ∪ q // Update property set
7: Train classifier θq on D for each q ∈ Q
8: until meet stopping criteria
9: return {θq}

Algorithm 2 Iterative learning with user-provided rules.

Input: spreadsheet table set x = {x} and user-provided rules
{θq init}.
Output: property detectors {θq}.
1: D = []
2: for q ∈ Q do
3: {lq init} = θq init({x})
4: end for
5: repeat
6: sheet selector chooses x from {x}
7: ask human to label x with properties q
8: D ← D ∪ (x,q)
9: Q← Q ∪ q

10: for q ∈ Q do
11: train classifier θq tmp on D
12: {lq tmp} = θq tmp({x})
13: D′ = D + ({x, lq tmp} ∩ {x, lq init})
14: train classifier θq on D′

15: end for
16: until meet stopping criteria
17: return {θq}

learning iteration in two parts: first, we accumulate all the
human-labeled training data as D, and we train the current
property detector based on D as θq tmp; second, we automat-
ically generate additional training data using the currently
trained classifier θq tmp and the user-provided rules θq init.
Our insight is that if the label produced by θq tmp agrees
with the label assigned by θq init, we believe this label is
trustworthy and denote it as a consensus label ; otherwise,
we cannot trust either label. If, however, the consensus la-
bel conflicts with human labels D, then we still believe the
human labeled data. The idea of finding the consensus la-
bels is similar to the bootstrap aggregating technique (i.e.,
bagging) [4]: it attempts to find the label agreements of
multiple classifiers. Based on the bagging-like technique,
our approach is able to tolerate “low-quality” user-provided
rules and provide additional high-quality labels especially in
the initial stage to warm up the classifiers quickly.

Similar to Algorithm 1, the sheet selector selects a new
instance; a human labeler labels the correct properties; and
finally the classifier learner trains the property detectors by
combining the accumulated human labels with the consen-
sus labels from two sides, the current trained classifier and
the user-provided rules. We iterate the above process until
reaching the performance plateau.

4.2 Sheet Selector Algorithms
Now we discuss the algorithms of the sheet selector by

considering two situations, the single-task and multi-task
learning scenarios. Note that in both cases, the sheet selec-
tor chooses random instances in the initial stage, and we set
the initial random selection size to be 10 by following the
configuration used in [15].

Single-task Learning — The single-task learning sce-
nario is when we train one property detector at a time. The
sheet selector simply applies the uncertainty sampling active
learning approach and selects an instance with the proba-
bility closest to 0.5 as used in [18].

To be concrete, the sheet selector selects the spreadsheet
table x to be

arg max
x

[
min

(
(P (lq = 1 | x), P (lq = 0 | x)

)]
(1)

where P (lq | x) represents the probability distribution of the
spreadsheet table x contains the property q according to the
current trained classifier θq.

Multi-task Learning — The multi-task learning sce-
nario can be complicated if we explore the correlations among
multiple classifiers. Previous multi-task active learning work
attempted to explore the correlations [16, 17]. For simplic-
ity, we assume each property detector is independent and we
simply uses the averaged uncertainty score for selection. To
be concrete, the sheet selector selects the spreadsheet table
x to be

arg max
x

1

|Q|
∑
q∈Q

min
(

(P (lq = 1 | x), P (lq = 0 | x)
)

(2)

where P (lq | x) represents the probability distribution of the
spreadsheet table x contains the property q according to the
current trained classifier θq.

5. EXPERIMENTS
In this section, we conduct experiments to test our two

goals as follows:

• Spreadsheet Property Detection — We investi-
gate the algorithms to build high-quality property de-
tectors with a small labeled dataset.

• Large-scale Spreadsheet Study — We survey the
distribution of the five most popular spreadsheet prop-
erties in the large-scale web data, and our findings
serve as guidelines for designing the spreadsheet-to-
relational table transformation system.

We used a mix of code from several languages and projects:
We used the Python xlrd library to access the data and for-
matting details of spreadsheet files. We extracted the for-
mulas from spreadsheets using the libxl library. We built the
classification model using the Python scikit-learn library for
its logistic regression, decision tree, and SVM method.

5.1 Data Sources and Experiment Setup
We rely on two spreadsheet data sources:

WebCrawl data — The WebCrawl dataset is our large-
scale web-crawled spreadsheet corpus. It consists of 410,554
Microsoft Excel workbook files with 1,181,530 sheets from
51,252 distinct Internet domains (a workbook file may con-
tain multiple sheets). We found the spreadsheets by look-
ing for Excel-style file endings among the roughly 10 billion
URLs in the ClueWeb09 web crawl.3

Web400 data — The Web400 dataset is a 400 labeled
sample from the WebCrawl corpus. We want to avoid sam-
pling too many spreadsheets from one HTTP domain be-
cause there are a few domains covering the majority of the
web spreadsheets [5]. Thus, we obtained this Web400 data
via the following procedure: we first grouped spreadsheets

3
http://lemurproject.org/clueweb09.php

5

by their HTTP domain, and removed the long-tail spread-
sheets (i.e., those from HTTP domains containing less than
20 spreadsheets), yielding 2,579 domains with 284,396 sheets
in total. Then we selected 20 random domains from the
2,579 domains; from each domain, we again randomly sam-
ple 20 sheets, yielding 400 sheets as the Web400 dataset.

5.1.1 Spreadsheet Properties on Web400 Dataset
Before doing experiments on the Web400 dataset, we in-

vestigated its spreadsheet properties as follows: we manu-
ally assigned correct spreadsheet properties to each Web400
sheet.4 Among the 400 spreadsheets, we found 309 spread-
sheets containing spreadsheet tables, while the rest included
unfilled forms, text, and visualizations.

We had two major observations. First, we identified 21
simple spreadsheet properties that covered the transforma-
tion process from spreadsheet tables to relational tables for
the 309 spreadsheets in Web400.5

Second, we observed that the five most popular proper-
ties covered the transformation process for 68% (209/309)
spreadsheets. In the rest of the experiment, we only focused
on these five properties for simplicity. These five properties
include:

1. Aggregation Rows (agg row) — An aggregation
cell is defined as an aggregation function (e.g., sum, and avg)
over a group of cells. An aggregation cell could be indicated
by spreadsheet formulas in an implicit way, for example, the
value may be copied from other places. A spreadsheet has
the property “agg row” if it has a row of aggregation cells.
For example, the spreadsheet in Figure 1 has the property
“agg row” as discussed in Section 1.

2. Aggregation Columns (agg col) — Similarly, a
spreadsheet has the property “agg col” if it has a column of
aggregation cells.

3. Hierarchical Data (hier data) — A spreadsheet
has the property “hier data” if there exists a cell in the data
region implicitly describing other cells. For example, the
sheet in Figure 1 has the property “hier data” because “ed-
ucation attainment” in row 6 implicitly describes rows 7-17.

4. Hierarchical Header (hier head) — Similarly, a
spreadsheet has the property“hier head” if there exists a cell
in the header region implicitly describing another column.

5. Crosstab — A spreadsheet has the property“crosstab”
if all of its numeric values can be converted into one col-
umn with a new dimension for the associated metadata.
For example, the spreadsheet in Figure 1 has the property
“crosstab” as discussed in Section 1.

5.2 Spreadsheet Property Detection
In this section, we investigate how much labeled data is

required to build high-quality property detectors in differ-
ent situations. We consider the single-task and multi-task
learning scenarios as mentioned in Section 4.2. We also in-
vestigate how the quality of the user-provided rules affects
the performance of our hybrid approach.

4
Notice that if a workbook contains multiple sheets, we select a ran-

dom non-empty sheet from it for labeling; and if there are multiple
spreadsheet tables in a sheet we only consider the first one.
5
The 21 spreadsheet properties are: aggregation rows, aggregation

columns, hierarchical header, hierarchical data, crosstab, vertical split
table, spanning cell, horizontal split tables, redundant column, redun-
dant row, no header, truncated header, merge rows, duplicate headers,
complicated hierarchical structure, horizontal orientation, mixed ori-
entation, blank rows, redundant header, truncate data, complicated
hierarchical header.

0 10 20 30 40 500
0.2

0.4

0.6
0.8

Training Data

F1

Plateau of
Green

Plateau of
Blue

Plateau
Value: 10.8

Plateau
Value: 28.6

Figure 4: An example of “training size to plateau”.

Property Crude User-provided Rules

agg row If the data region contains the keyword “total” or
has a row with embedded formulas, then true;
otherwise false.

agg col If the header region contains the keyword “total” or
has a column with embedded formulas, then true;
otherwise false.

hier data If the data region has different formatting styles
(e.g., alignment, bold, indentation, and italic),
then true; otherwise false.

hier head If the header region contains merged cells, then true;
otherwise false.

crosstab If the variance of the string length in the header region
is < 0.5, then true; otherwise false.

Table 1: Crude user-provided rules for the five prop-
erties in Section 5.1.1.

Sheet Selector User-provided Rules

Rand random selection N/A
Active uncertainty sampling N/A

Hybrid-noisy uncertainty sampling bad rules
Hybrid-clean uncertainty sampling good rules

Table 2: Four methods to build property detectors.

5.2.1 Experiment Setup
We tested the top five spreadsheet properties mentioned

in Section 5.1.1. Our experiments were based on the Web400
data. In each of its 20 domains, we split the 20 sheets into
1/2 for potential training and 1/2 for testing, yielding 200
sheets for potential training and 200 for testing.

In the experiments, we simulated the iterative learning
framework in Section 3.1 and measured the performance
of the current trained classifiers for each iteration: we fed
the 200 potential training spreadsheets as the spreadsheet
dataset for the iterative learning framework. During each
iteration, we calculated the F1 score of the currently trained
classifiers on the 200 testing data. We simply used the
probabilistic model, logistic regression, as the classification
method.

We use training size to plateau as the evaluation metric,
and it represents the least training data size needed to reach
the performance plateau. For example, Figure 4 shows the
F1 score of a classifier given different sizes of training data.
As shown in the Figure, the training size to plateau for the
“green” and “blue” methods are 10.8 and 28.6, respectively.
This indicates that “green” saves 62.2% of the training data
required by “blue” to reach the performance plateau.

Measuring the training size to plateau is similar to the
task of knee point detection [22]. For simplicity, we detect
the training size to plateau using the following two criteria:
First, we use the standard deviation σ to test whether the
standard deviation of five consecutive points is less than
a threshold δ. To avoid reaching a local optima, we also
test whether the current performance (i.e., F1) is above a
predefined threshold θF1. In the experiment, we are able to
calculate the F1 score when we use up all the 200 potential

6

@δ = 0.01

Methods agg row agg col hier data hier head crosstab

Rand 98 170 59 191 113
Active 56 140 42 131 52
Hybrid- 56 126 45 92 59
noisy (0%) (-10%) (+7%) (-30%) (+13%)

Hybrid- 44 109 27 31 42
clean (-21%) (-22%) (-36%) (-76%) (-19%)

@δ = 0.05

Methods agg row agg col hier data hier head crosstab

Rand 37 101 33 86 64
Active 28 61 33 98 41
Hybrid- 31 66 35 39 45
noisy (+11%) (+8%) (+6%) (-60%) (+10%)

Hybrid- 16 52 18 22 31
clean (-43%) (-15%) (-46%) (-78%) (-24%)

Table 3: The training size to plateau for four prop-
erty detection methods with δ = 0.01 and δ = 0.05.
The % represents the improvement over Active.

training data as F1opt, and we simply set θF1 = F1opt − δ.
We tested our iterative learning framework using the four

approaches as shown in Table 2. Rand randomly selects the
next spreadsheet and does not use any user-provided rules;
Active employs the uncertainty sampling active learning ap-
proach without considering user-provided rules; Hybrid-noisy
and Hybrid-clean are our hybrid approach that integrates the
uncertainty sampling active learning approach with crude
user-provided rules. Hybrid-noisy assumes low-quality user-
provided rules while Hybrid-clean assumes high-quality rules.
For Hybrid-clean, we used the designed rules for each spread-
sheet property as shown in Table 1; and for Hybrid-noisy, we
used the rules for other spreadsheet properties. For exam-
ple, to build the property detector for “agg row”, we test
each of the other four rules (e.g., “agg col” and “hier data”).

For each method above, we ran 100 times to obtain the
averaged F1 score for different sizes of training data, and we
report the training size to plateau. Except for Hybrid-noisy,
we ran 100 times with each of the four “bad” user-provided
rules, totaling 400 times. We then report the average train-
ing size to plateau for the four configurations.

5.2.2 Single-task Learning
In this section, we learn the property detectors for the five

spreadsheet properties individually.
Table 3 shows the training size to plateau for the four

testing methods. As shown in the table, Hybrid-clean signif-
icantly outperforms all the other three methods. It means
that when a human provides with good rules in the begin-
ning stage, we are able to save 35% (when δ = 0.01) or 41%
(when δ = 0.05) labeled data when averaged over all proper-
ties, compared Active. In addition, we can see Hybrid-noisy is
comparable to the standard active learning approach Active,
and it indicates that our hybrid approach is able to tolerate
bad user-provided rules.

Rule Qualities — We also test the how the quality of
user-provided rules affect the speed to reach plateau.

We generate rules of different accuracy synthetically based
on the 200 potential training data. Consider generating the
user-provided rules with accuracy 0.3. Given a property,
we randomly select 200× 0.3 spreadsheets and assign them
with their true labels, and we assign the rest 200 × (1 −
0.3) spreadsheets with the false labels. We then feed this
synthetically labeled data into our hybrid framework as the
user-provided crude rules with the accuracy 0.3.

We generate the synthetic rules with the accuracy ranging

0.0 0.2 0.4 0.6 0.8 1.0
User-provided Rule Accuracy

0

20

40

60

80

T
ra

in
in

g
 S

iz
e
 t

o
 P

la
te

a
u agg_row @delta=0.01

0.0 0.2 0.4 0.6 0.8 1.0
User-provided Rule Accuracy

0

25

50

75

100

T
ra

in
in

g
 S

iz
e
 t

o
 P

la
te

a
u hier_head @delta=0.05

Figure 5: The quality of user-provided rules influ-
ences the training size to plateau.

0 50 100 150 200
Training Data Size

0.5

0.6

0.7

0.8

F1

Hybrid-clean

Hybrid-noisy

Active

Rand

Figure 6: The F1 performance curve to learn the
five property detectors together.

from 0 to 1 by 0.1 to feed into our hybrid iterative learning
framework. We ran 100 times for each accuracy level and
obtained the average F1 score to calculate the training size
to plateau for each spreadsheet property detector.

Figure 5 shows two examples of the training size to plateau
for rules with different accuracy. As shown in the Figure,
the training size to plateau decrease almost linearly when
the user-provided rule accuracy improves for “agg row” at
δ = 0.01 and “hier head” at δ = 0.05. This observation also
applies to the rest properties.

5.2.3 Multi-task Learning
In this section, we learn the property detectors for the five

spreadsheet properties together.
Figure 6 shows the F1 scores for different sizes of train-

ing data when learning the five property detectors together.
As shown in the Figure, Hybrid-clean reaches the plateau
much sooner than the other three methods: it saves 44%
(when δ = 0.01) and 34% (when δ = 0.05) training data,
when compared to the standard active learning approach
Active. It indicates that “good” user-provided rules do save
a significant amount of extra labeling work. In addition,
Hybrid-noisy is comparable to Active, and it indicates that
our hybrid framework can tolerate“bad”user-provided rules.

In summary, compared to the standard active learning
approach, our hybrid approach is able to save 34%-44%
of the training data when averaged over all properties to
reach the performance plateau when a human provides rel-
atively high-quality rules, and performs comparably with
low-quality rules.

6. LARGE-SCALE SPREADSHEETS STUDY
In this section, we investigate the distribution of the five

spreadsheet properties mentioned in Section 5.1.1 in the
large-scale WebCrawl dataset. We evaluate the performance

7

F1

Method agg row agg col hier data hier head crosstab

LR 0.876 0.844 0.782 0.845 0.798
DTs 0.825 0.788 0.746 0.772 0.689
SVM 0.855 0.823 0.749 0.815 0.766

Accuracy

Method agg row agg col hier data hier head crosstab

LR 0.894 0.917 0.856 0.923 0.895
DTs 0.849 0.891 0.834 0.892 0.843
SVM 0.876 0.908 0.835 0.912 0.880

Table 4: The F1 and accuracy of five spreadsheet
property detectors using three different classifica-
tion methods.

of the five property detectors using Web400 data, and then
show two observations on the large-scale WebCrawl data.

6.1 Experiment Setup
We obtained 1,181,530 spreadsheets from 410,554 .xls work-

book files in the WebCrawl data.6 We first recognize the
spreadsheet tables in an input spreadsheet using the ap-
proach mentioned in [5], and then use the property detectors
to collect the the spreadsheet property statistics.7

We trained property detectors for the five spreadsheet
properties using all the Web400 data and then ran the the
five classifiers on the WebCrawl dataset. We evaluate the
performance of the spreadsheet property detectors for the
five spreadsheet properties on the Web400 data via the 2-
fold cross-validation. We use two common metrics: accuracy
measures the percentage of spreadsheets which we correctly
recognize whether it contains a given spreadsheet property;
and F1 measures the harmonic mean of precision and recall
for each spreadsheet property.

Table 4 shows the performance of the spreadsheet prop-
erty detectors using three classification methods: LR (i.e.,
logistic regression), DTs (i.e., decision trees) and SVM (i.e.,
support vector machine with the linear kernel). As shown
in the table, logistic regression performs the best among the
three classification methods, and thus we used logistic re-
gression as the classification model for the spreadsheet prop-
erty detection. Note that accuracy is always higher than F1,
because the spreadsheet properties are unbalanced: few pos-
itive examples and more negative examples.

6.2 Observations on WebCrawl Data
As a result, we obtained the spreadsheet properties as-

signed to each of the 1, 181, 530 WebCrawl spreadsheets.
We have two observations on the web spreadsheets.

Observation 1 — There is a significant portion of spread-
sheets in the web which contain each of the five spreadsheet
properties. Figure 7 (a) shows the distribution of the five
spreadsheet properties on the web. As shown in the fig-
ure, the ratio of the web spreadsheets containing the five
spreadsheet properties ranges from 27.4% to 44.7%. It in-
dicates that there is a significant portion of spreadsheets in
the web containing each of the five spreadsheet properties.
The property “agg row” is the most popular among the five,
followed by “hier data”, and their proportions are all greater
than 40%.

Observation 2 — The majority of the spreadsheets in the
web contain at least one spreadsheet property. Figure 7

6
One .xls workbook file might contain multiple spreadsheets.

7
Note that if there are multiple spreadsheet tables in a spreadsheet,

we only retain the first one.

(a) (b)

Figure 7: The distribution of the five spreadsheet
properties in the web.

(b) shows the distribution for the number of properties in
one spreadsheet. It shows that there are 32.6% spreadsheets
without any of the five spreadsheet properties; there are
67.4% web spreadsheets containing at least one spreadsheet
property. It indicates that there is a much larger portion
of the web spreadsheets containing a variety of spreadsheet
properties than those without any property.

In summary, the majority of the spreadsheets in the web
contain one or more than one spreadsheet properties. In
order to transform a large number of spreadsheets into a
high-quality relational form, we have to identify a variety of
spreadsheet properties.

7. CONCLUSION AND FUTURE WORK
We have described a hybrid iterative learning framework

to construct spreadsheet property detectors quickly, and it is
the first step towards building the spreadsheet-to-relational
table transformation pipeline that is able to handle a large
variety of spreadsheets. Our hybrid approach integrates
the active learning framework with crude easy-to-write user-
provided rules, and it is able to save more training data to
reach the performance plateau when compared to the stan-
dard active learning method.

In the future work, we want to build the spreadsheet-to-
relational table transformation system using the spreadsheet
property detectors. We will also investigate the user inter-
face design to allow more effective interactions with users in
order to conduct accurate and low-effort transformation.

8. REFERENCES
[1] R. Abraham and M. Erwig. Ucheck: A spreadsheet

type checker for end users. J. Vis. Lang. Comput.,
18(1):71–95, 2007.

[2] Y. Ahmad, T. Antoniu, S. Goldwater, and
S. Krishnamurthi. A type system for statically
detecting spreadsheet errors. In ASE, pages 174–183,
2003.

[3] J. Attenberg and F. Provost. Why label when you can
search?: alternatives to active learning for applying
human resources to build classification models under
extreme class imbalance. In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 423–432, 2010.

[4] L. Breiman. Bagging predictors. Machine learning,
24(2):123–140, 1996.

[5] Z. Chen and M. Cafarella. Automatic web spreadsheet
data extraction. In Proceedings of the 3rd
International Workshop on Semantic Search over the
Web, page 1. ACM, 2013.

8

[6] Z. Chen and M. Cafarella. Integrating spreadsheet
data via accurate and low-effort extraction. In
Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 1126–1135. ACM, 2014.

[7] Z. Chen, M. Cafarella, J. Chen, D. Prevo, and
J. Zhuang. Senbazuru: A prototype spreadsheet
database management system. Proceedings of the
VLDB Endowment, 6(12):1202–1205, 2013.

[8] J. Cunha, J. Saraiva, and J. Visser. From spreadsheets
to relational databases and back. In PEPM, pages
179–188, 2009.

[9] P. Donmez, J. G. Carbonell, and P. N. Bennett. Dual
strategy active learning. In Machine Learning: ECML
2007, pages 116–127. Springer, 2007.

[10] G. Druck, B. Settles, and A. McCallum. Active
learning by labeling features. In Proceedings of the
2009 Conference on Empirical Methods in Natural
Language Processing: Volume 1-Volume 1, pages
81–90. Association for Computational Linguistics,
2009.

[11] M. Gyssens, L. V. S. Lakshmanan, and I. N.
Subramanian. Tables as a paradigm for querying and
restructuring. In PODS, pages 93–103, 1996.

[12] H. He, E. Garcia, et al. Learning from imbalanced
data. Knowledge and Data Engineering, IEEE
Transactions on, 21(9):1263–1284, 2009.

[13] V. Hung, B. Benatallah, and R. Saint-Paul.
Spreadsheet-based complex data transformation. In
CIKM, pages 1749–1754, 2011.

[14] L. V. S. Lakshmanan, S. N. Subramanian, N. Goyal,
and R. Krishnamurthy. On query spreadsheets. In
ICDE, pages 134–141, 1998.

[15] C. Li, Y. Wang, P. Resnick, and Q. Mei. Req-rec: High
recall retrieval with query pooling and interactive
classification. In Proceedings of the 37th international
ACM SIGIR conference on Research & development in
information retrieval, pages 163–172. ACM, 2014.

[16] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, and H.-J. Zhang.
Two-dimensional active learning for image
classification. In Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on,
pages 1–8. IEEE, 2008.

[17] R. Reichart, K. Tomanek, U. Hahn, and
A. Rappoport. Multi-task active learning for linguistic
annotations. In ACL, volume 8, pages 861–869, 2008.

[18] G. Salton and C. Buckley. Improving retrieval
performance by relevance feedback. Readings in
information retrieval, 24(5):355–363, 1997.

[19] B. Settles. Active learning literature survey. University
of Wisconsin, Madison, 52(55-66):11, 2010.

[20] K. Tomanek and U. Hahn. Reducing class imbalance
during active learning for named entity annotation. In
Proceedings of the fifth international conference on
Knowledge capture, pages 105–112, 2009.

[21] X. Zhang, T. Yang, and P. Srinivasan. Online
asymmetric active learning with imbalanced data. In
KDD, 2016.

[22] Q. Zhao, V. Hautamaki, and P. Fränti. Knee point
detection in bic for detecting the number of clusters.
In Advanced Concepts for Intelligent Vision Systems,
pages 664–673. Springer, 2008.

[23] J. Zhu, H. Wang, T. Yao, and B. K. Tsou. Active

learning with sampling by uncertainty and density for
word sense disambiguation and text classification. In
Proceedings of the 22nd International Conference on
Computational Linguistics-Volume 1, pages
1137–1144, 2008.

9

